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CONTACT PROBLEM OF ELASTICITY THEORY FOR A WEDGE* 

L.A. KIPNIS and G.P. CHEREPANOV 

An exact closed solution of the plane static contact problem of elasticity theoryon 
the impression of a rigid stamp of arbitrary form on an elastic wedge is constructed 
by the Wiener-Hopf method. Particular cases of plane and parabolic stamps are ex- 
amined in more detail. For a wedge angle greater than n the problem belongstothe 
class A' and the external field must be taken into account for a correct solution. 
In this case, the nontrivial solution of the corresponding homogeneous problem is 
constructed and investigated. 

1. Formulation of the problem. Let us consider an infinite elastic wedge O< r( oo, 
O<U<a (O<a <2n) at whose edge 0= 0 a rigid stamp is impressed (Fig-l). There is no 
friction between the stamp and the wedge surfaces. It is assumed that the section 0 = 0, O< 
T< 1 of the elastic body boundary is in contact with the stamp. The wedge surface is stress- 

free outside the line of contact. 
In the case when the wedge opening angle n is greater 

than n, the problem under consideration belongs to the class 
N. Let us recall /1,2/ that the Saint-Venant principle is 

not satisfied in the class N and a nontrivial damped solution 
of homogeneous problems exists which is much greater than the 
inhomogeneous solution (external field) in absolute value, at 
great distances. The Saint-Venant principle is valid in the 
well-investigated class S, and nontrivial damped solutions of 
the homogeneous problems does not exist. Hence, for a>11 the 
solution of the problem under consideration behaves at infin- 
ity as the greatest solution of the homogeneous problem satis- 
fying the stress damping condition asymptotically for a wedge 
O<r<=, O<B<a with stress-free edges. This latter is 

Fig.1 determined to the accuracy of two arbitrary real constants C, 
and %I. These constants are considered givenby the condition 
of the problem. They characterize the external field intens- 

ity which exects substantial influence on the state of stress in an elastic body with an in- 

finitely remote point in this case. In the case under consideration the stresses damp out at 
infinity more slowly than O(Ilr). 

If a<n then the problem belongs to the class S, the external field exerts no substan- 
tial influence on 
0 (l/r). 

The boundary 

the state of stress in the wedge , and the stresses damp out at infinity as 

conditions of the problem under consideration Can be written as follows: 

()=a, ae=r,e=q e=o, z,s=o 

e=o, r>l, Cre=O; e=O, r<l, 4 =f(r) 
e=o, r--tm, h&r=O(l/r) (O<a<n) 

%l 
-z-=- 

WC1 (2sr)h,-l sin (Al- $)a 
2 -tQ[+j (R<a<a,) 

% 
dr==- 

2(1~y')C1 (2sr)?q-lsisthlf! '1 e - *err (2JIr)h.-1 x 
(Z- 4Y)COS(ha- 

shl(hp+ l)a/2 1)a’2+(h,+1)sina +q_) (a*<a<2x) 

e=u, r-l-0, a&,- I 
1/2x(1 

s ce(r, O)dr=Y, ise(r, 0) r&-=&i 
II LI 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
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Here % %e, 0, are the stresses, ne, n, are displacements, hj (a) E ('/I, 1) 0' = 1, 2) is the 
single rootoftheequation sin pa - (-i)jpsina = 0 in the strip 0< Re p < lofthe ComplexplaneP; 
Cr (a) (a-c <a<&~) and Crr(a) (a, <a<%)are given continuous functions afor which CI (n) = 
0, ~~~(a,)= 0; a, is the single root of the equation acesa - Sina = 0 in the interval JC< 
a(2n;f (r) is a given function, K is a factor to be determined, (0,Y) andMare the principal 
vector and principal moment of the force in the section 0 = O,O<r< 1 (the quantity Misgiven, 
but Mshould be determined during solution of the problem), E is Young's modulus, and V is the 
Poisson's ratio. 

If the length l of the contact line is not known, it is determined fromthe conditionthat 
the coefficientK is zero (here the stresses will be constrained at the point I3 =O, r = 1). With- 
out limiting the generality, the length of the contact line can be considered one. 

The problem formulated is a particular case of a contact problem for a wedge with contact 
section (3 = 0, d< r<d+ 1 for d = 0. The solution of this problem is contructed in /3/ in 
the absence or an external field. Let us note that the first fundamental problem of elastic- 
ity theory for a wedge with opening angle greater than n was first considered in /4/. 

We present certain information about the roots of the equationsin 2pa+p sin2a=O (0< 
a<2n) in the strip 0< Re p < 1. 

For O<a<nn/2 this equation has no roots in the strip mentioned. For n/2 < a-< n a 
single root plE ('/a,l)exists, for n < a < 3nl2 two roots p, E (0, I/,) and pLI E (I/z, 1) while for 
3x12 (a < 2n three roots, ~1~ E (U, I/Z), p'z E ('/a, 1) and fLs E ('12, I), wnere ~2 < ~3. 

2. Solution of the inhomogeneous problem without taking account of the ex- 
ternal field. Let there be no external field (C, = 0, CII = 0). 

Applying the Mellin integral transformation 

m* (p) = f m (r) rl’ dr 
” 

to the equilibrium equations, the strain compatibility condition, and the "through" conditions 
(l.l), we obtain /5/: 

Q* @, 0) = A, sin @ + I)8 + A, sin @ - l)e + 
A, cos @ + 1) 8 + A, co9 (p - 1) 8 

(2.1) 

Tre* =; (p - 1)-l E$ ( d% 5 
pur* = (p - I)-1 + - Q* 

A, sin @ + 1) a + A4 sin (p - 1) a + A, cos @ + 1) a + 

A,cos@-l)a=O 

AI @ -I- 1) cos 0, + 1) a + Aa (p - 1) cos @ - 1) a - 

A, @ + 1) sin (p + 1) a - A, (p - 1) sin @ - 1) a = 0 

A, @ + 1) + A, @ - 1) = 0 

From (2.2) we find 

A,=-SAl, A8 = _ 2 (P sixPa + sin2 pa) A 
sln2pa+psin2cc l 

A&=_ 2(p+1)(psinaa--inapa) A1 

(p -l)(sln2pa+ p sink) 

In conformity with (2.1) and (2.3) 

ue* (P, 0) = - 
4 (pa sinaa- sina pa) 

(p - 1) (Sin 2pa + p sm 2~4) A1 

Using Hooke's law, taking account of (2.1) and (2.3), we obtain 

” sue S-I ar e-0 
rP dr = _ v (p - I)-’ A1 

0 

(2.2) 

(2.3) 

(2.4) 

Eliminating A, in the relationships (2.4) and (2.51, and taking into account the "dual" 
conditions (1.2), we arrive at a Wiener-Hopf functional equation: 
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~‘-Go)=-tgpnG~)[~+@)fg@)l(-~<Rep<O) 

G(P)= 
2 (p”m’a- SlnP pa) 

- ty [In (sm Zpa + p s,n Zcr) 

(2.6) 

(f'(r) is the derivative of the function f(r)with respect to r). The method of isolating tgpn 
in the coefficient of the Wiener-Hopf equation permits solving the problem of factorizingthe 

function with an essential singularity at infinity. It was used first in /6/, and then in 

many papers related to the utilization of the Mellin transform and the Wiener-Hopf method. 

The following factorizations are valid for the functions G(p) and tgpn /7/: 

G(P) = G+ (p)lG- (P) (Rep = 0) (2.7) 

tg Pn = K+ &- (p) ’ K* (p) = 
r (1 F PI 
r (‘ir F p) 

(r(Z) is the Euler gamma-function). 
Taking account of (2.7) and using the representation 

G+ (p) g (P) UC+ (p)F = g+ (P) - g- (P) (Re P = 0) (2.8) 

1 tza c+ (t)g (t) rlt g’(p)? Rep<0 
2ni s -= 

K+ (1) t-P 
--ICE 

g-(P)1 Rep>0 

we obtain from (2.6) 

@- (p) K- (p) G- (p ) - pg- (p) = --pm+ (p) G+ (p) [K+ @)I- - Pg+ (P) (Re p = ‘) (2.9) 

The function in the left side of (2.9) is analytic in the half-plane Rep> Oandthe func- 

tion in its right side is analytic in the half-plane Rep (0. On the basis of the principle 

of analytic continuation they equal the same function that is analytic in the whole plane p. 
It follows from (1.4), (2.7) and (2.8) that the function in the left side of (2.9) tends to 

the constant 

in the half-plane Hey y;O as p-f 00 . 
Therefore, by the Liouville theorem a single analytic function is identically equal to 

this constant in the whole plane p. In particular 

@- (0) K- (0) G- (0) = -+ - 6 

Taking into account (1.5), we obtain from the last equation 

K=(6+ cY)v/a c= i_a;;p;;$ y/z 

The solution of the functional equation (2.6) has the form 

@,- (P) = 
pg-(p)-tcy (Rep>O) 
K- (P) G-(P) 

Q,+(p) = - “g$‘ctd, cyK’(~) (Rep<O) 

(2.10) 

3. The homogeneous problem. Let us assume that a wedge with opening angle greater 

than n is deformed only because of the external field; the normal displacement and the prin- 

cipal force vector are zero on the section I3 = 0, O( r( 1. 
The solution of this homogeneous problem equals the sum of the solutions of the follow- 

ing two problems. The first is a particular case of the boundary value problem considered in 
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Sect.2, for Y = 0 and 
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+ * C~~(Lrsrf ~~ (2--4v)cos(b,-~)a/2+(~~f)sina - 
sin&+ 1)a/2 (3.1) 

(for n < c <a* there is no component corresponding to G). The second problemisthe homo- 
geneous problem for a wedge with stress-free edges (the solution of this last is kept in mind, 
which is realized as the asymptotic of the solution of the initial problem at infinity (see 
(1.3)) ). 

4. Analysis of the solutions. The complete solution of the initial problem is the 
sum of the particular solution of the inhomogeneous problem constructed in Sect.2 andthe homo- 
geneous solution of Sect.3. 

Let us determine the length 1 of the contact line in the initial problem for a smooth 

stamp of arbitrary shape from the condition K = 0. According to (2.10) and (3.1), by going 
over to dimensional variables we arrive at the following equation 

(for Z<Uf a, thereisnocomponentcorrespondingto Cl1 while for O<a< X. none correspond- 
1 

ing to C~and LIII. 
Here 

Irn G+(P)&?(P) hl=-& j K+(p) dp, gdP)=&~fX4@% 
--im 0 

22 = (2x) h - 1 (2-49)COS(hg- 1)ufZ Jr (kg+ i)sina 4(1 - r)sin(h, +- l)a/2 

We present the asymptotic formula for the contact stress oe(fI = O,O<r<l) in the neigh- 
borhood of the angular point (for r-+0): 

(for ~<a,< % there isnocomponentcorrespondingto &I, while for O<a< TC nonecorrespond- 
ing to C, and CII ). 

Here 

im C+(P)PI(P) dp 
e?k+=& j K+(P) --im p’ 

3, 3n/2<a<2n 
R = ( 0 (rfil-l), 0 <a Q nl2 

0 (3, nlZ<a<Zn. 

(y > 0,~ = 0 only for a = 3d2). 
Let us determine the domain of existence of the contact problem solution constructed by 

considering, as is usual, a negative pressure to be impossible at the contact line. For f' (F)< 
0 when the angular point of the body lies on the contact line starting with the very first 
moment of contact between the stamp and the body, the contact pressure will everywhere be posi- 
tive. If the function f’(r) changes sign once from plus to minus, the solution will exist only 
starting with certain values of the parameters of the problem governed by the following condi- 
tions: 

(4.1) 

(for 5'C<a,<c*thereisnocomponentcorrespondingto C II, and for 0< a< ST none corresponding 
to C, and Cu) _ 

This equation determines the time when the contact pressure changes sign at the angular 
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point; it corresponds to the principal term vanishing in the expansion of the stress at the 
angular point. Condition (4.1) is an extension of the known condition of N.I. Muskhelishvili 
that requires boundedness of the stress at the end of the contact line (this latter was used 
above in defining 1). 

By using (1.5) we obtain the following expression for the moment &I: 

(for n<a<aa, the component corresponding to CII, and for O<a-< mthe components cor- 
responding to C~and CII are missing). 

Let us note certain particular cases of the problem under consideration in the case of 
no external field. 

5. Stamp with rectilinear horizontal base. In this case f’(r) = 0, andthelength 
1 of the contact line is known. 

In this case the contact problem is analogous to the corresponding problem for a wedge 
-a<B<a withaslitfor 8 =0, r>l. Hence, for O<a< m the results obtained here agree 
with the solution of the problem mentioned obtainedin/0/. For n<a<2nthey yield thesolu- 
tion of the problem for the corresponding two-layer elastic plate with a slit for f3 = 0, r> l 
if friction between the overlying plates is neglected in the domain 2.n - a<8<a. In these 
problems the evaluation of the factor 

is of main interest 
Let us present 

for fracture mechanics. 
the formula for the contact stress under the stamp (0 = 0, 0< r< i): 

6. Stamp with rectilinear sloping base. Let f’(r) = U(U is a dimensionless contact). 
In this case the equation to determine the length of the contact line has the form 

cYl-‘l: - 4 (, _ $) 
*G+(- l)(nl)'lx =O 

We hence find 

1 =q rx-'/p[G+ (_ I)]-'Ya-' 

The contact stress under the stamp is expressed by the formula 

oe = -$ i[ S(p) [cYl-‘p-1 - * d/42+ (- 1) (p + 1,-q x -g# (+)-l-l dp 
-im 

7. Parabolic stamp. Let f’(r)= brll(b is a dimensionless constant). The equation to 

determine the length of the contact line is written thus 

cyplz - +)G+(- 2)(~d)"~=O 

We hence obtain 

I = ” ‘;, “‘) cn-‘lx [G+ (- 2)]-’ Yb-1 

The formula for the contactstress has the form 

cl&. 3 S(p) [CYF’p-I- 
--im 

& n'W+(- 2)(p + 2)-l] x $$(+J-"dp 
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